THE PROPERTY OF THE PROPERTY O

TITRATIONS 1

1 25.0 cm³ of 0.200 mol/dm³ barium hydroxide solution reacted with 22.8 cm³ of hydrochloric acid. Calculate the concentration of the hydrochloric acid in mol/dm³. Give your answer to 3 significant figures.

$$Ba(OH)_2(aq) + 2 HCl(aq) \rightarrow BaCl_2(aq) + 2 H_2O(l)$$

moles Ba(OH)₂ = conc x vol (dm³) = 0.200 x
$$\frac{25.0}{1000}$$
 = 0.00500 mol
moles HCl = 2 x moles of Ba(OH)₂ = 2 x 0.00500 = 0.0100 mol
conc HCl = $\frac{\text{moles}}{\text{volume (dm³)}}$ = $\frac{0.0100}{\frac{22.8}{1000}}$ = 0.439 mol/dm³

2 22.5 cm³ of sodium hydroxide solution reacted with 25.0 cm³ of 0.100 mol/dm³ hydrochloric acid.

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H2O(I)$$

a) Calculate the concentration of the sodium hydroxide solution in mol/dm³. Give your answer to 3 significant figures.

moles HCl = conc x vol (dm³) = 0.100 x
$$\frac{25.0}{1000}$$
 = 0.00250 mol moles NaOH = moles of HCl = 0.00250 mol conc NaOH = $\frac{\text{moles}}{\text{volume (dm³)}}$ = $\frac{0.00250}{\frac{22.5}{1000}}$ = 0.111 mol/dm³

b) Calculate the concentration of the sodium hydroxide solution in g/dm³. Give your answer to 3 significant figures.

conc NaOH =
$$40 \times 0.111 = 4.44 \text{ g/dm}^3$$

What volume of 0.150 mol/dm³ rubidium hydroxide reacts with 25.0 cm³ of 0.240 mol/dm³ nitric acid? Give your answer to 3 significant figures.

$$RbOH(aq) \ + \ HNO_3(aq) \ \rightarrow \ RbNO_3(aq) \ + \ H_2O(l)$$
 moles HNO₃ = conc x vol (dm³) = 0.240 x $\frac{25.0}{1000}$ = 0.00600 mol moles RbOH = moles HNO₃ = 0.00600 mol volume RbOH = $\frac{moles}{conc}$ = $\frac{0.00600}{0.150}$ = 0.0400 dm³

4 25.0 cm³ of 0.200 mol/dm³ sodium hydroxide solution reacted with 28.7 cm³ sulfuric acid. Calculate the concentration of the sulfuric acid in mol/dm³. Give your answer to 3 significant figures.

$$2 \text{ NaOH(aq)} + \text{H}_2\text{SO}_4(\text{aq}) \rightarrow \text{Na}_2\text{SO}_4(\text{aq}) + 2 \text{ H}_2\text{O(I)}$$

moles NaOH = conc x vol (dm³) =
$$0.200 \text{ x} \frac{25.0}{1000}$$
 = 0.00500 mol
moles H₂SO₄ = $\frac{1}{2}$ x moles of NaOH = $\frac{1}{2}$ x 0.00500 = 0.00250 mol
conc H₂SO₄ = $\frac{\text{moles}}{\text{volume (dm³)}}$ = $\frac{0.00250}{\frac{28.7}{1000}}$ = 0.0871 mol/dm³

© www.CHEMSHEETS.co.uk 22-May-2018 Chemsheets GCSE 1105

5 25.0 cm³ of 0.150 mol/dm³ sodium hydroxide reacted with 30.3 cm³ of a solution of ethanoic acid.

$$CH_3COOH(aq) + NaOH(aq) \rightarrow CH_3COONa (aq) + H_2O(I)$$

a) Calculate the concentration of the ethanoic acid in mol/dm³. Give your answer to 3 significant figures.

moles NaOH = conc x vol (dm³) =
$$0.150 \text{ x} \frac{25.0}{1000}$$
 = 0.00375 mol
moles CH₃COOH = moles NaOH = 0.00375 mol
conc CH₃COOH = $\frac{\text{moles}}{\text{volume (dm³)}}$ = $\frac{0.00375}{\frac{30.3}{1000}}$ = 0.124 mol/dm³

b) Calculate the concentration of the ethanoic acid in g/dm³. Give your answer to 3 significant figures.

conc CH₃COOH =
$$60 \times 0.124 = 7.43 \text{ g/dm}^3$$

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Uses equation for other reactant moles			Does not round too much		
Shows suitable working			Can find concentration of other reagent			Can use sig figs		
Can work out moles from conc & vol			Can convert mol/dm³ to g/dm³			Gives units		

© www.CHEMSHEETS.co.uk 22-May-2018 Chemsheets GCSE 1105